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SUMMARY 

Some aspects qf the dynamics of the bow and arrow have been considered. The governing equations are deriv- 
ed by means of Hamilton's principle. The resulting non-linear initial-boundary-value problem is solved numer- 
ically by use of a finite-difference method. The influence of the characteristic quantities on the performance 
of a bow ~s discussed. 

1. Introduction 

This paper deals with the interior ballistic o f  the bow and arrow, hence with the phenomena 

which happen between the moment  of  release of  the arrow and the moment  that the arrow 

leaves the string. This subject is amply investigated experimental ly by Hickman and Klopsteg [1 ]. 

Hickman used also a mathematical  model. In order to be able to get numerical results without  

the help of  a computer  his model  had rather severe simplifications. Because o f  these simplifica- 

tions only bows with specific features could be dealt with. We hope that this article will add to 

the understanding o f  the action of  rather general types of  bows, by  giving more accurate and 

detailed numerical results. 

We are concerned with bows of  which the flexible parts (limbs) move in a flat plane, and 

which are symmetric with respect to the line o f  aim. The arrow will pass through the midpoint  

of  the bow, as in the case of  a 'centre-shot bow' .  We assume that  the bow is clamped at its mid- 

point by the bow hand. The bows are allowed to possess a mild 'recurve'  of  ' reflex' .  This means 

that the limbs of  the bow in unstrung situation are allowed to be curved away from the archer, 

however, not too  strongly. 

We will consider the bow as a slender inextensible beam. The dynamical  boundary conditions 

at the tips o f  the elastic limbs follow from the connection of  the tips, by means of  a string, to 

the end of  the arrow. The initial deformation of  the bow is given by its shape in the fully drawn 

position, the initial velocities are zero. Also in our theory some assumptions have been made. 

Most of  these result from the use of  the Euler-Bernoulli equation for the elastic line which re- 

presents the bow. Further,  the mass of  the string is taken to be zero, the string is assumed to be 

inextensible and the arrow is taken to be rigid. Neither internal or external damping nor hyste- 
resis are taken into account.  

Non-linear vibrations of  beams have been studied by many authors. Most of  them are con- 

cerned with periodic motions. Woodall [2] obtains the governing equations of  motion by con- 
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sidering a differential element of a beam. Wagner [3] and later Verma and Krishna Murthy [4] 

applied Hamilton's principle. However, in [3] and [4] the constraint which follows from the 

fact that the beam is assumed to be inextensible is not taken into account in the variational 

problem itself, but is used afterwards. This makes their equations differ from ours. In Section 2 

Hamilton's principle is used and a physical meaning of the Lagrange multiplier connected to the 

inextensibility of the bow is given. This has been done by comparing our equations with those 
obtained by Woodall. In the static case such a method was already applied by Schmidt and Da 
Deppo [5]. 

In Section 3 a finite-difference method to solve the equations of motion numerically is de- 

scribed. The results are compared with the results of a finite-element method. 

The performance of a bow and arrow depends on a number of parameters, the length of the 
bow, the brace height or the length of the string, the draw, the mass of the arrow and the mass 

of concentrated masses at the tips (if any). It depends also on three functions, namely the dis- 

tributions of bending stiffness and mass along the bow and the shape of the bow in its unstrung 

situation. In order to get insight into the influence of the afore-mentioned quantities, in Section 

4 these quantities are changed systematically, starting from a bow described by Hickman [1 ], 

page 69. Besides the static quality coefficient, already introduced in [6], two dynamic quality 
coefficients are introduced. One is the efficiency and the other is related to the velocity of the 

arrow when it leaves the string, sometimes called the muzzle velocity. These three numbers can- 

not give by themselves a complete insight into what makes a bow a good one, for instance, with 
respect to target shooting, flight shooting or hunting. Also other subjects become important, 

such as smoothness of the recoil of the bow, its manageability, and so on. Whenever it is possi- 

ble, our results are compared with experimental and theoretical results given in [1 ]. 
Although it belongs clearly to the interior ballistics of a bow and arrow, we will not discuss 

in this paper the interesting 'archer's paradox'. This is the phenomenon that the elastic arrow, 

during the shooting period of a conventional non-centre-shot bow, carries out a vibrational 
motion. Because we only consider centre-shot bows, the assumption that the arrow be rigid 

with respect to bending is without loss of generality. 
In the Appendix some attention is paid to the behaviour of the normal or longitudinal force 

in our model of the bow, at the moment the arrow is released. When concentrated masses at the 

tips are present, the normal force seems to have a jump at that moment. This jump disappears 

when in an approximate way extensibility of the bow is simulated. 

2. Equations of  motion 

In this section the equations of motion of the bow and the dynamic boundary conditions are 
derived by means of Hamilton's principle. The equations of motion can also be obtained by 
applying the linear momentum and angular momentum balance of a differential element of the 

bow, as is done for instance by Woodall [2]. 
First we introduce the quantities which fix, with respect to our problem, the features of 

bow and arrow. The total length of the inextensible bow is denoted by 2i,. The bow will be re- 
presented by an elastic line, along which we have a length coordinate ~-, measured from the mid- 
point, hence 0 _< I~- I < L .  This elastic line is endowed with bending stiffness W(s)and mass per 
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On the mechanics o f  the bow and arrow 121 

unit o f  length V(s). The rigid arrow has a mass 2m a, where the factor 2 is inserted for conve- 

nience later on. In addition, there may be concentrated masses m t at each of  the tips, represent- 
ing the mass of  the horns used to fasten the string or artificially added masses. The bow is placed 

in a Cartesian coordinate system (x, y) ,  the x-axis coinciding with the line of  aim and the origin 

0 with the centre of  the bow. Because the bow is symmetric with respect to the line of  aim, 

only the upper half of  the bow is dealt with in what follws. The unbraced situation (Figure 

2.1(a)) is given by the functions x = Xo (s) and y =Yo (s) or by the angle 0o (s) between the 
y-axis and the tangent to the bow, reckoned positive in clockwise direction. Because s is the 
length parameter the functions Xo (s) and Y o (s)have to satisfy Xo 2 (s) +y~ z (s) = 1, where the 

prime indicates differentiation with respect to s. Lo is the half length of  the rigid part in the 

middle of  the bow, called the 'grip', thus for 0 < s < Lo we have W(s) = oo. 

In Figure 2.1 (b) the braced situation is depicted. The distance lOB I is the 'brace height' or 

'fist mele'. The length of  the inextensible string, used to brace the bow, is denoted by 2l (l < L). 

It is possible that, when recurve is present, the string lies along part of  the bow in the braced 

situation. However, in this paper we assume the string to have contact with the bow only at the 

tips in all situations, static or dynamic. Hence, only bows without recurve or with a moderate 

recurve will be considered. In Figure 2.1(c) the bow is in fully drawn position. The geometry in 
this position is described by the functions x = X l (S) and y = Y l ( s ) (x t l  2 (s-)+;r12 (s-)= 1), or by 

the angle 0~ (s). The distance I OD l is called the 'draw' and the force F(  I OD I) is the 'weight'. 

The following short notation of  a specific bow and arrow combination will be used: 

B(L, Lo, W(s), V(s) ,Oo(s) ,ma,  mt, I ~ l  or l ;  [ODI, F ( l O D I ) , m b ) ,  (2.1) 

where the brace height l OH I or half o f  the length 7 of  the string can be given. Further m a is 

half o f  the mass of  the limbs, the flexible parts of  the bow, so 
£ / ,  

m b = £J V(s)ds.  (2 .2)  

The variables before the semicolon in (2.1) together with the draw I OD I determine completely 

the features of  the bow, while the quantities behind the semicolon are used when we introduce 

dimensionless variables. 

We now derive the equations of  motion of  bow and arrow. For simplicity we take Lo = 0; if 

¥ ~,=-C 

e s 

~= 

o 

Figure 2.1. 

g 
(o1 0 H (b) 0 (cl 13 

Three situations of a bow: (a) unbraced, (b) braced and (c) fully drawn. 
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this is not the case the obtained equations have to be changed in an obvious way. The Bernoulli- 
Euler equation (which is assumed to be valid) reads 

M(s, t ) =  W(s) { x ' y " - y ' x "  +0o},  0 < s  < L, (2.3) 

where M(s, t) is the resultant bending moment at a cross section (see Figure 2.2. for sign). 
We recall that because the bow is symmetric with respect to the line of aim, we confine ourselves 
to its upper half, clamped at the origin 0. The potential energy Ap of the deformed upper half 
is its bending energy 

1 M 2 (s, t )  d s .  (2 .4)  

The kinetic energy Ak is the sum of the kinetic energy of the upper half of the bow, half the 
kinetic energy of the arrow and the kinetic energy of the concentrated mass at the tip. Then 
when a dot indicates differentiation with respect to time t, 

~ E  
= J 0  l m a ~ 2  l m t l x 2 ( L , t ) + y 2 ( L , t ) } ,  (2.5) 1 v(s) (x 2 +y2)d + 

where b is the x-coordinate of  the end of the arrow or the middle of the string, which can be 
expressed in the coordinates of  the tip of the bow by 

1 

b( t ) -- x (L ,  t)  + (7 2 _ ~2 (~, ~-))~, (2.6) 

because the string is assumed to be inextensible. The string is also assumed to be without mass, 
hence it contributes neither to the potential nor to the kinetic energy. Because the bow is inex- 
tensional we have the constraint 

x - , 2  +~ ,2  = 1, 0 < s  < L .  (2.7) 

We introduce 

A=Ak- p+ fo ? ~ ( s , t ) ( x ' 2 + y  ' 2 -  1)ds, 0 < s < L ,  (2.8) 

where X(s, t )  is an unknown Lagrangian multiplier to meet the constraint (2.7). Then by Hamil- 
ton's principle we have to find an extremum of 

fTo t' t, (2.9) A d 

hence 

fTo" 6 A d t = 0 ,  (2.10) 

for fixed initial time t -- to and fixed final time t - -  t 1 . 
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On the mechanics o f  the bow and arrow 123 

Because the bow is clamped at the origin 0, we have f o r s  = 0 the geometric boundary condi- 
tions 

x(0,  t ) = y ( 0 , t ) =  0, y ' ( O , t ) = y ~ ( 0 ) .  (2.11) 

By standard methods of  calculus of  variations and using (2.11) we find the Euler equations as 
necessary conditions for the ext remum of  (2.9) 

Vx  = (.v"/~') '  - 2 ( ~ x ' ) '  + (y ' . ~ / ) " ,  (2.12) 

and 

V y  = - ( x "  M) '  - 2 ( ~ y ' ) '  - ( x ' . M ) " .  (2.13) 

Also the dynamic boundary conditions at s = L follow from the variational procedure, they 

become 

M(L, t )  = 0, (2.14) 

ma~ + m t x (L, t)  = 2 X(L, t )  x '  (L, t )  - y '  (L, -[)~I' (L, t ) ,  (2.15) 

_ y ( t ,  . .  

m a m tY (L ,  t )  = - 2  ~,(L, t ) y '  (L, t )  - x '  (i,,  t-)/IT (L, t-). (2.16) 
b - x ( L ,  t) 

The initial conditions which complete the formulation of  the problem are 

x ( s , O ) = x t ( s ) , y ( s , O ) = y , ( s ) ,  x(s ,  0) = y ( s ,  0) = 0, 0 < s < L .  (2.17) 

Although it is not necessary for the computations,  we look for a physical meaning of  the func- 
tion h(s, t).  In Figure 2.2 the resultant forces and moments  acting on a differential element of  

the bow are shown. The momentum balance in the x-andy-direct ion gives 

V x = ( T x ' ) '  - (Q y ' ) ' ,  (2.18) 

and 

V y  = ( T y ' ) '  + (~9 x ' ) ' ,  (2.19) 

respectively, where T(s, t )  is the normal force and Q (s, t )  the shear force on a cross section (see 
Figure 2.2). If the rotatory inertia o f  the cross section of  the bow is neglected, the moment  bal- 
ance of  the element gives 

~I' (s, t )  = - Q(s, t) .  (2.20) 
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- ~ ,  T(g+Ag]I 

0 ( g . A g ~  ' 

Tlg,t} 

Figure 2.2. Forces and moments on a differential element of the bow. 

Comparing equations (2.18) and (2.19), using (2.20) to replace Q by M', with (2.12) and (2.13), 
we find the physical meaning of X 

I~ ,+__(M_W0o) ,  0 < s < L .  (2.21) ~(s, t)  = - 
W 

Substitution of (2.21) in the boundary conditions (2.15) and (2.16) yields 

may + m t x ( L ,  t )  = - T(L ,  t)-x' (L, t )  - y ' ( L ,  }-)M' (L, t) ,  (2.22) 

and 

ma 
y ( L ,  t )  

b ( t ) - x ( L ,  t )  
- m t y (L, t )  = T(L,  t-) y '  (L, t - ) - x '  (L, t-)M' (L, t ) .  (2.23) 

Equations (2.22) and (2.23) connect the deformation of the bow at s = L to the force compo- 
nents in the x- andy-direction, exerted by the string and by the mass m t at the tip. 

The functions x 1 (s) and y l(s) occurring in the initial conditions (2.17) satisfy the equations 
of static equilibrium, with b = IOD I, obtained from (2.18), (2.19) and (2.20) by putting the 
left-hand sides of the first two mentioned equations equal to zero. The two relations (2.3) and 
(2.7) remain unchanged. Besides we have the boundary conditions (2.11), (2.14), (2.22) and 
(2.23), where in the latter two we have to replace the first term on the left-hand sides by 

1 -{*w(IOD[)  and - ~ y ,  (L) F (  IOD I ) / (b -x l (L) ) ,  respectively. The weight of the bow 
F (  I OD I) is unknown and has to be determined in the course of the solution of these equations. 
in Equation (2.6)b has to be replaced by its known value I OD I, the draw of the bow. The static 
deformations are discussed in [6]. 

The acceleration (or dynamic) force on the arrow, denoted by E, is given by 

E ( t )  = - 2 m a ~ ( t ) .  (2.24) 
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and the recoil force if, which is the force of  the bow exerted on the bow hand (reckoned positive 

in the positive x-direction) by 

e ( t )  = 2 Q~" (0, t-) Yo (0) + T(0, t-) x~ (0) }. (2.25) 

We introduce dimensionless quantities in the following way 

(x ,y , s , -£ ,Lo,7 ,  IOHI, b ) = ( x , y , s , L , L o , l ,  IOHI, b)" IOOl,  

( r , F , e , e )  = (7, F, g , e ) .  F( tOOt) ,  

) I4=M"  10/51 • F( IODI), F¢= W IODI 2 • F(  IODI), V= V" mb/  IOOl, 

1 
(ma, rot) = (ma, mt) " m a, t = t • {m a I OD I / F(  I OD 1)} 2 , (2.26) 

where we used the a priori unknown weight F (  I OD I) of  the bow to make the quantities di- 
mensionless. In the following we will systematically label quantities with dimension by means 
of  a bar ' - ' ,  quantities without bar are dimensionless. Quantities, when they have dimensions, 
will be expressed, unless stated otherwise, by means of  the following units: length in cm, force 
in kgforce, mass in kgmass and time in .03193 sec. 

If  the velocities u (s, t) = 2  (s, t) and v (s, t) =3) (s, t) are introduced the system of  six non- 
linear partial differential equations for the six functions x, y ,  u, v, M, T of  two independent 
variables s e [Lo, L] and t > 0 assumes the form 

VEt = ( Tx ' ) '  + (M 'y ' ) ' ,  (2.27) 

Vb = ( Ty ' ) '  - (M 'x ' ) ' ,  (2.28) 

= u, (2.29) 

p = v, (2.30) 

x '2 + y ' =  = 1, (2.31) 

t M= W(x 'y"  - y ' x "  + 0o) .  (2.32) 

The boundary conditions at s = L0 become 

x(Lo, t) = xo(Lo),  y(Lo,  t) =Yo(Lo),  y ' (Lo ,  t) = y o ( L o ) ,  (2.33) 

and at s = L  (t > 0 ) ,  

M(L, t) = 0, (2.34) 

ma'tJ + mr'x" (L, t) = - T ( L ,  t ) x '  (L, t) - M '  (L, t )y '  (L, t), (2.35) 

maY(L,  t)'tJ - mr)) (L, t) ( b ( t ) -  x(L,  t) ) = (T(L,  t )y '  (L, t) 

- M '  (L, t )x '  (L, t) ) (b ( t ) -  x (L, t) ), (2.36) 
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with 

1 

b( t )  =x (L ,  t) + (l 2 _ y2  (L, t ) )  ~ . 

The initial conditions (2.17) become 

x(s, O)= x, (s), 

Y ( s , O ) = y l ( s ) ,  

u ( s , O ) = v ( s , O ) = O ,  Lo < s  < L .  

The dimensionless dynamic force E and recoil force P are given by 

E(t )  = - 2  m a '~, 

and 

P(t)  = 2 {M'  (Lo, t ) y o  (Lo) + T(Lo, t) x o (Lo)}. 

B. W. Kooi 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

The finite-difference method discussed in the next section can be used for the solution of 
both the static and the dynamic equations. In [6] the static problem, which is a two-point 
boundary-value problem for a system of  ordinary differential equations, is solved by means of a 
shooting method. 

3. Finite difference equations 

In order to obtain approximations for the solution of  the partial differential equations (2.27-32), 
with boundary conditions (2.33-36) and initial conditions (2.38-40) we use a finite-difference 
method. We consider the grid 

s = j  As ,  j = 0(1)n s, n s As = L  - L0,  (3.1) 

and 

t = k A t,  k = 0(1)n  t, (3.2) 

n t being an integer large enough to cover the time interval of  interest. The grid points are indi- 
cated by 'x '  in Figure 3.1. To satisfy the boundary conditions external mesh points are intro- 
duced, (Lo-As, k a t) and (L + As, k a t), with k = 0 (1)n t, indicated by ' a '  and 'Vl', respective- 
ly. The value of  a function f ( s ,  t) at the grid point (/" A s, k A t) is denoted by ~',k and o f h  (s) 
and g (t) by h i and gk, respectively. 
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t 
unknown values f,Y,M 

known values Xy, 
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Figure 3.1. 
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Grid placed over the s, t-plane. 
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xy 
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There are many difference schemes possible to approximate the differential equations. For 
instance the term ( Tx ') ' ( j  As, k A t ) can be approximated by 

TLk AS 2 + 2AS 2As ' (3.3) 

but also by 

(XJ'k--Xj--l'k) ~ 
Ti+~,k (Xi+l'kAs--XJ'k) -- T/_~,k As /As .  (3.4) 

In the last case the normal force T is defined at each time level only at points just in between 
the grid points (3.1), indicated by '0' in Figure 3.1. The normal force T(L,  t) at the tip of the 
bow, occurring in the boundary conditions (2.35) and (2.36), can at time t = k A t for instance 
be approximated by 

3 
1 (3 .5 )  

The same kind of approximation (3.3) and (3.4) can be used for the other terms on the right- 
hand sides of (2.27) and (2.28). The constraint (2.31) can be approximated at the grid points, 
yielding for point ( j  A s, k A t) 

((Xj+l, k - xj_ 1,k)/2 As }2 + ((Vj+l, k _ yj_ l , k ) / 2  As }2 = 1. (3.6) 

When we approximate this constraint at points in the middle of  the grid points we obtain 

~(xj, g - x i -1 ,k  ) / A s } 2  + {(Yi, k - Y i -  l,k ) / A s } 2  = 1. (3.7) 
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The type of approximation (3.4)in combination with (3.7) turned out to be satisfactory because 
it is well matched to the boundary conditions. 

If we use (3.4), and take a weighted average by means of the factor/a, of forward and back- 
ward approximations of each of the four equations (2.27) ... (2.30) we find 

Vj(Uj, k+ 1 - uj, x) / A t = 

I d [{ Tj+~,k+l (Xj+l,k+l --Xj, /¢+l)--  Tj__~,k+l (Xj,k+l - - X j - l , k + l ) } / A s  2 + 

~(~.+,,,,+, - M/ , , ,+  l )  O ' j + , , , , + ,  - Y j , , , + , )  - ( ~ , , , , + ,  - M j _ , , k + , )  

(Yj,k+l -- Yj-- l ,k+l )}  / A$3 ] + 

(l--/.1) [{ T/.+t,k (Xj+I, k -Xj ,  k ) - -  T]_~, k (X],l¢ - X ] _ l ,  k )} /As  2 + 

{(Mj+, ,k--Mj,k  )O' j+l ,k--Yj ,k ) - - ( M j , k - M i - l , k  ) 

( Y j , k - Y j - l , k  )~/A$31,  

j = 0 ( 1 ) n  s -  1, ( 3 . 8 )  

(1 -U) 

Vj(vj,k+l - v / ,D/  A t=  

#[{ Tj+~,g+](Yi+],k+]-Yi.k+,)--  T/--~,k+, ( : .vi .k+,--Yj_, ,k+,)}/As2-  

~(Mj+ l ,k  + l - -  Mj,k + l ) (Xj+ 1,/¢+, - -  Xj, k + , ) - -  (Mj,/¢+ 1 -  M ] _  , ,k  + , ) 

(xj, k+ 1 - x i_ 1,k+l)} / ZX$ 3 ] + 

[~ Ti+~,k ( Y j + , , k - Y j , k  )--  ~ '-~,k (ej,k - Y i - l , ~  ) ~/As2-  

( x j , k - x j _ l , k  )}/ZX$~], 

j=O(1)n  s 1, 

(xj, k+ 1 -  x j , k ) / A t = ~ u j , k +  l +(1-1a)uj ,  k, j = 0 ( 1 ) n  s, 

(Y],k+l --Yj, k ) /A t=laVj ,  k+l +(i  --#) Uj,k, j = 0 ( 1 ) n  s. 

Using (3.7) we approximate (2.31) and (2.32) by 

~(xi,k+l -- Xj_ 1,k+l)/A$} 2 -J- ((Yj,R+I - - Y j - l , k + l ) /  A8}2 = 1, 

] = 0 ( 1 ) n  s + 1 

and 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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Mj,k+ 1 = [¥i[{(Xj+l ,k+ 1 -- X j_  1,k+l)/2As}{(Vj+l,k+l - 2yj,k+ 1 + y j _ l , k + l ) /  As  2 } - 

{Cvj+ 1,k+ 1 - Y I -  l,k+ 1) / 2 As } {(xj+ x,k+ 1 - 2xj ,k+ 1 +xj_  1,k+ 1) / As2 } + 

1 For /2 = 
O ( A t  2) + O(As2) .  For /2 = 1 we have the fully implicit backward time 
then the truncation error is O ( A t )  + O(As2) .  

The boundary conditions (2.33) are approximated by 

and 

129 

+O'o(l"As)],  ] = O ( 1 ) n  s. (3.13) 

these equations become the Crank-Nicolson scheme and the truncation error is 

difference scheme, 

X0,k+l =xo(L0) ,  Y0,k+l =Yo(Lo) , (3.14) 

('Vl,k+l - - Y -  l , k + l ) / 2 A s  =Yo (Lo). (3.15) 

Before writing down the boundary conditions at s = L we mention that, besides the x-coor- 
dinate b o f  the arrow, it appeared to be advantageous to introduce also its velocity 

d e f .  
c = b (3.16) 

as another unknown function. Then the three boundary conditions (2.34-36) at s = L are ap- 
proximated by the difference relations 

Mns,tC+ 1 = 0, (3.17) 

ma(Ck+ 1 c k ) / A t  +mt(Uns,k+l  - U n s , k ) / A t  = 

3 1 
- p [ {  2 Tns-~ ,k+l  -- ~ Tns_ l~,k+l }{(Xns+l,k+l -- X n s - l , k + l ) /  2 A s }  + 

{(Yns+l,k+l Y n s - l , k + l ) / 2 A S } { ( - - 4 M n s - l , k + l  + M n s _ 2 , k + l ) / 2 A s } ]  

3 1 
- (1 - p) [( -~ Tns_~,k -- i Zn s -  1-~,k } {(Xns+l ,k -- Xn s -  1 ,k)  / 2AS} + 

{(¢Vns+ l,k -- Yn s -  1,k)/2 AS } {( --4 Mns - 1 ,k + M n s - 2 , k )  / 2 As]'], (3.18) 

(/2yns,k+l + (1 --/2)Yns,k ) m a (ck+ 1 -- ck)  / A t  - {/2(bk+ 1 - Xns,k+l ) + 

+ (1 --/2) (b k - Xns,k)} m t (Vns,k+l -- Vns,k ) / A t  = 

[/2(bk+ 1 -- Xns,k + l ) + (1 --/2) (b k - Xns,k )] 

3 1 
[/2[{ ~ Tns-~ ,k+l  - ~ Tn s -  l~,k+l } { (Yns+l , k+l  - Y n  s -  1,k+l) /2AS} - 
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{(Xnx+l,k+l - - X n s - l , k + l ) / 2 / k S } { ( - - 4 g n s _ l , k + l  + M n s _ 2 , k + I ) / 2 A S } ]  

3 I Tn s l~ , k } { (Yns+l , k  yns_  1 k)/mA$}" + (1-~t) [{ -~ Tns_~ ,k -- ~ - -- , -- 

{(Xns+ l ,k - Xn s -  1,k) / 2 As } { ( -  4 Mns - 1,k + Mn s -  : ,k ) / 2 AS } ] ]. 

Finally we take as approximations for (2.37) and (3.16) 

(3.19) 

2 2 = l 2 
(bk+ 1 -- Xns, k+l +Yns,k+l , 

and 

(3.20) 

(bk+ 1 - b k ) / A t = # C k +  1 +(1 --la)C k ,  

respectively. The dynamic force E (2.41) is approximated by 

(3.21) 

Ek+ 1 = - -  2 m  a (Ck+l - e k ) / A t  , (3.22) 

and the recoil force P (2.42) by 

r 1 t 
Pk+l = 2{(Ml,k+l -- M_ 1,k+1)/2  As "Yo (Lo) + ~ (T~,k+ 1 + T__~ ,k+l )xo  (Lo)}. (3.23) 

At t = 0 the initial values of  the unknown functions x, y ,  u, v are given by (2.38-40). The 

finite-difference approximation for the static equations can be found in a straightforward way 
from equations (3.8-21). 

At each time, hence for each k A t ( k  = 0(1)n t ) ,  we have to solve a set of  nonlinear equa- 

tions, which is done by means of  a Newtonian method. For this method it is essential to have 
reliable starting values for the unknowns. 

i) The equations for  the static case, f o r  t = O. 

Starting values for the solution o f  the static finite-difference equations are obtained by using 

the values computed by means of  the program described in [6]. The reason that we revise these 
values by means o f  the static finite-difference scheme, is that the values obtained in this way are 
better matched to the finite-difference scheme for the dynamic equations. 

ii) The dynamic  case, f r o m  t = 0 to t = A t ( k  = 0). 

We use as starting values of  the unknowns at time level At  the values obtained in i). In order to 
avoid the use o f  the values of  the accelerations at t = 0 we take # = 1. In the Appendix we re- 
turn to this. 

iii) The dynamic  case, f r o m  t = k A t to t = ( k + 1) A t ( k = 1(1) nt). 

The starting values for the time level (k  + 1) A t o f  the unknowns x, y ,  u, v, M, b and c are ob- 
tained from the equations (3.8-11), (3.13), (3.17-19) and (3.21), with gt = 0. This means that 
we explicitely calculate these values from the final results at the preceding time level k A t .  

1 From these starting values we calculate the values at the time level (k  + 1)At,  with /1 =5 .  
Hence the further dynamical development for t 3> A t is determined by a Crank-Nicolson scheme. 

In order to get accurate information about the way in which the arrow leaves the string, the 
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mesh width At  in the t-direction is chosen continuously smaller from a certain time, at which 

the string is nearly stretched. Because the difference scheme is a two-time-level one with ap- 

proximations for only first-order derivatives with respect to time, no special provisions are 

needed. 
For instance, in [7] numerical methods to solve related problems are analysed. In the non- 

linear case only for specific problems stability and convergence of  some difference schemes can 

be proved analytically. Here no proof  is given of  the stability and convergence of  our difference 

scheme, however, we have checked our method numerically. First, in the static case, we compare 

automatically (see (i)) the results of  the finite-difference method with the results obtained with 

the program described in [6]. The difference between the weight of  the bow computed by both 

programs appears to be about .5%, if we take n s = 64. Second, the total energy Ap +Ak (equa- 

tions (2.4) and (2.5)) has to be constant during the motion. Third, we can investigate the con- 

vergence of  the difference equations by refining the grid. We consider the special bow 

B(91.44, 10.16, W(s) ,  V(s), 0 o - 0 ,  .0125,0, IOH1=15 .24 ;  71.12, 15.53, .1625). 

(3.24) 

The bending stiffness W ( s )  and the mass distribution V ( s )  are given by 

s / L - s \  
W(s)= 1.30" 10 t - - - - - - ~ ) '  

and 
s I L - s \  

W ( s ) = 7 . 6 9  if 1 .30.  10 - -  < 7.69, 

L - s  

(3.25) 

(3.26) 

(3.27) 

The value at the tip of  W ( s  ) (3.26) is necessary in order to avoid difficulties in the calculation. 

This bow ( H b o w )  is also discussed by Hickman in [1 ], page 69. 

TABLE 3.1. 

Dependence orb,  c ,  a and A p + ~t k on A t ,  AS = 1.27 crn, 7 = .0157 sec. 

A~ sec b cm c- cm/sec a cm/sec~ ~'p + Ak kgfcm 

4.9089- 10-'  16.379 -5544 -147704 560.48 
2.4544 • 10 -4 16.375 -5548 -139432 560.43 
1.2272 • 10-* 16.373 -5549 -132578 560.41 

TABLE 3.2. 

Dependence orb,  c, a and ~lp + A k  on As,  &t = 1.2272 • 10-* sec, 
T = .0157 sec. 

A~- cm b cm F cm/sec a" cm/sec2 ~.p + Ak kgfcm 

5.08 16.06 -5583 -136392 569.8 
2.54 16.24 5563 -132585 563.6 
1.27 16.37 -5549 -132578 560.4 
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In Tables 3.1 and 3.2 we show the dependence o f  some calculated dynamic quantities on the 

mesh widths A t and As, respectively. The quantities are the x-coordinate b ( c m )  of  the end of  

the arrow, the velocity c = b (cm/sec), the accelera t iona  = c (cm/sec 2) and the energy Ap + Ak  

(kgfcm). The values are given for a fixed t i m e t  = .0157 sec, which is near to the time at which 

the arrow leaves the string (.01662 sec). The same can be done for other  times, then the results 

are similar with respect to convergence. From these tables it seems reasonable that  with decreas- 

ing values of  A t  and As the solutions o f  the difference equations 'converge'. The energy for A7 

= 1.2272" 10 -4 sec and A s =  1.27 cm differs about  .5% from its value 557.207 kgfcm at time 

7 = 0 .  

A fourth check is to compare our results with those obtained by the use of  the finite-element 

program MARC of  the MARC Analysis Research Corporation. This has been done for the bow 

B(91.44,  10.16, W, V, 0o = 0, .01134, 0 , l =  89.34; 70.98, 15.43, .1589), (3.28) 

where the bending stiffness W(s) and the mass distribution V(s) are given by 

( L - s  ) 
W(s) = 1.15" 10 s \ ~ o  

and 

7.69 if 1 . 1 5 . 1 0 s /  L - s  ] _< 7.69 W ( s ) =  
t Z - Lo ! 

L - s  
V (s)  = 3.91 " 10-3 ( - - ~ - - ~ o )  • 

(3.29) 

(3.3o) 

(3.31) 

TABLE 3.3. 

Comparison between finite-difference and finite-element solution. 

T see 

.501 • 10 -2 
1.001 • 10 -2 
1.401 • 10 -2 

finite element 

cm ~ cm/sec 

63.69 -2739 
45.47 -4399 
25.69 -5449 

f'mit e difference 

cm ~- cm/sec 

63.53 -2795 
44.98 -4480 
24.84 -5537 

In the MARC program the functions W and Vare approximated b y s t e p  functions and both the 

bow and the string are taken slightly extensible. The number of  elements used was eight, andr 

A t =  .001 sec. For  the finite-difference scheme we used At-= .001 sec and A s =  1.27 cm. The 

values of  b and c are given in Table 3.3 for several values of  t .  In Figure 3.2 the acceleration a of  

the arrow in cm/sec z as function o f  the time in sec, computed by  both programs is drawn. We 

conclude that there is a reasonable agreement between the results with respect to the x-coordi- 

nate b and the velocity c of  the arrow. The acceleration curve obtained by using the MARC-pro- 

gram, however, is oscillating in a non-physical way. 
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Figure 3.2. Accelaration of arrow. 

4. Some numerical results 

In [6] the so called static quality coefficient, denoted by q, was defined. This quantity is given 

by 

q = A / { I O D I .  F( I  OOl)} ,  (4.1) 

where A is the energy stored in the bow by deforming it from the braced position into the fully 

drawn position. This energy reads 

l f = W(s) ( 0 ' ( ~ ) -  0~(s ) )2ds  _ _ _  (4.2) 
b=l OHI 

We now introduce two dynamic quality coefficients r /and  u in order to be able to compare 
more easily the performance of  different bows in combination with various arrows. The effi- 
ciency r /o f  a bow is defined by 

r7 = m a c-~/A, (4.3) 

where cQ is the muzzle velocity. The produkt q.r/is a measure for the energy imparted to the 

arrow. It is evident that in all kinds o f  archery we want this quantity to be as large as possible. 
However, it cannot be on its own an appropriate measure of  the performance of  the bow. If  we 

let for instance increase the mass m a of  the arrow indefinitely, then the efficiency (4.3) tends 
to its largest value, namely one, hence qr/ tends to its largest value q, however, the muzzle velo- 

city c~ tends to zero. Klopsteg [1], page 162, mentioned the cast as another criterion of  the 

quality o f  a bow. He defines the cast as the property o f  a bow that enables it to impart velocity 
to an arrow of  stated mass. So a second dynamic quality coefficient can be defined by 

l 

(q_~a)2 (4.4) 
/)= =c£, 
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where the last equality follows from (4.1), (4.3) and (2.26). Thus, if the weight, draw and mass 

o f  the limbs are stated, then u is a measure for the muzzle velocity of  a given arrow. In order to 
show on which dimensionless quantities v depends, we write 

v=c~(L, Lo, W(s), V(s),Oo(s),ma, mt, I O H l o r  ~), 0 < s  < L .  (4.5) 

For flight shooting the quality coefficient u is important because then u is wanted to be suf- 

ficiently large. For hunting (but certainly for target shooting) it is not easy to find a criterion 

for the good performance of  bow and arrow. What we can state is that the bow has to shoot 

'sweetly' and without an unpleasant recoil. By this we mean that the acceleration of  the arrow 

should happen smoothly enough and that the recoil force P (2.42) should be not too large or 
fluctuating too strongly. 

One of  our objectives is to get insight into the influence of  the quantities which determine a 

bow on the numbers q, 77 and u, and on the behaviour o f  the forces E(b) and P(b). To this end 

we start with the H b o w  

B(1.286, .143, W(s), V(s), Oo =-0, .0769, 0, I OHI = .214; 1,1,1), (4.6) 

and change in a more or less systematic way its parameters. The bending stiffness W and the 

mass distribution V in (4.6) are given by (3.25), (3.26) and (3.27) of  which the values have 

been made dimensionless by using (2.26). 

If  the three quantities q, r/and u are known the muzzle velocity c~ (cm/sec) can be comput- 

ed. Using (4.4) and (2.26) we find 

1 

c~ = 31.32 v - -  cm/sec, (4.7) 
m b 

where the number 31.32 is caused by the choice of  our units. The kinetic energy (kgfcm) im- 

parted to the arrow of  mass 2 m a follows from 

mac  ~ =m a v z F ( I O D I ) .  IODI:~?q F ( I O D I ) .  IOD I. (4.8) 

These equations show the dependence of  the two important quantities, the muzzle velocity 

(4.7) and the kinetic energy of  the arrow (4.8), on the weight, draw and mass o f  the limbs. For 

the H bow (3.24) we have F(  IOD I) = 15.53 kgf, IOD I = 71.1 cm and m b = .1625 kg, and the 

computed values o f  q, 77 and u are .407, .89 and 2.16, respectively. Thus for this bow, c~ = 5578 

cm/sec and m a cQ 2 = 400 kgfcm. The shooting time (the time interval between the loosing of  the 

arrow and its leaving the string) appeared to be .01662 sec. 

In Fig. 4.1 we have drawn the dimensionless static-force-draw (SFD) curve F(b  ), and dy- 
namic-force-draw (DFD) curve E(b), calculated by our theory for the H bow. Also the curves 

obtained by Hickman's theory [1 ], page 69, are drawn. The SFD-curves coincide with each other 

within drawing accuracy. As can be seen from Figure 4.1 the DFD curve obtained by using the 
finite-difference method is gradually decreasing. There is no jump in the force on the arrow at 

t = 0. The finite-difference method will in general give an efficiency which is smaller than one. 
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Figure 4.1. SFD and DFD curves, Hickman's theory and this theory. 

The x-coordinate b of  the arrow for which the force at the arrow is zero, hence the value of  b 

where the arrow leaves the string, is a bit smaller than the brace height. 

Hickman used a simple model  ( H  model)  which consists of  two rigid limbs without  mass, 

connected each to the grip by  means of  a linear elastic hinge. The strength of  these hinges is deter- 

mined in some way by  the elastic properties of  the real bow. The mass of  the real limbs is ac- 

counted for by concentrated masses at the tips of  the limbs. Because o f  these masses the force 

on the arrow has, when calculated by means of  the H model, a jump at time t = 0. In [6] it is 

proved that the efficiency ~/of  a H model  bow is always 1. That is why in Figure 4.1 the area 

below the SFD curve and the area below the DFD curve, calculated by  means of  the H model, 
are equal. 

We mention that  in the figures given by  Hickman in [1], page 5 and 7, the acceleration of  

the arrow measured experimentally,  and hence also the force on the arrow, is zero at time t = 0, 

which is in contradict ion with his own model. The dynamic force on the arrow in our theory at 

that moment  is, if there are no concentrated masses at the tips ( m  t = 0), equal to the static 
force in fully drawn posit ion (see Appendix).  

The shapes of  the limbs of  the H bow for some positions of  the arrow, both  static and dy- 

namic, are shown in Figure 4.2. For  b = 1 both  shapes are the same. After loosing the arrow 

first the outer  parts of  the limbs stretch themselves. The released bending energy is used to ac- 

celerate both  the arrow and the limbs. For  a certain value of  b the shape in the dynamic and sta- 

tic case are nearly the same. After that the outer  parts of  the limbs are decelerated and become 

more sharply bent than in the static case. Now the inner parts of  the limbs become more 
stretched and loose their bending energy. 

In Figure 4.3 the DFD curve and the recoil force P, as a function o f  the posit ion of  the end 

of  the arrow b, are drawn. It can be seen that although the force E at the arrow decreases after 

release o f  the arrow, the recoil force P increases and becomes more than two times the weight 

of  the bow. We note that  at a certain moment  it becomes negative; this means that the archer 

has to pull instead of  to push the bow at the end o f  the shooting in order to keep the grip at its 

place. In modern archery, however, it is practice to shoot open-handed. But then it is impossible 

for an archer to exert a force on the bow directed to himself and the assumption that the bow 

is clamped at the grip, is violated. Possibly less kinetic energy will be recovered from the bow 
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Figure 4.3. Dynamic force E (b )  and recoil force P ( b ) for the H bow. 

when negative recoil forces occur if the bow is shot open-handed. In this paper we adhere to the 

assumption that the grip of  the bow is clamped. 
Klopsteg [l ], page 141, carried out experiments to investigate the motion of  the bow hand 

while the arrow is being accelerated. He finds, besides other  movements, always a small excursion 

of  this hand backwards after the loose. He states: 'A satisfactory explanation for the slight back- 

ward mot ion is that during the 20 or 30 thousands o f  a second after the loose, a very consider- 

able force is being exerted by the string on the arrow and consequently an equal backward 

force is exerted by the handle of  the bow on the bow hand. During this brief  impulse the instan- 
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taneous value o f  the force may rise to several hundred pounds, but  lasting for an exceedingly 

few thousands of  a second'.  This explanation is in contradict ion with the results shown in Figure 

4.3. The dynamic force E at the arrow and the force P at the bow hand are not  equal at all. 

In what follows we consider the consequences of  a change of  one characteristic quanti ty of  

the H bow at a time, the other ones being kept  the same. The values of  the static quality coeffi- 

cient q given in the following tables are computed  by means of  the program described in [6]. 

Only if the smoothness o f  the DFD curve or the behaviour of  the recoil force P differs clearly 

from the smoothness of  that curve in the case of  the H bow, this is explicit ly mentioned. 

The influence of  a change of  the length of  the grip 2Lo is shown in Table 4.1. In [1], page 

18, the effect o f  a rigid middle section, a grip, is also dealt with. This is an interesting subject 

because it is known that a bow which bends throughout  its whole length is not a pleasant bow 

to shoot. It has a so-called 'k ick ' .  Because Hickman did not  found striking theoretical differen- 

ces with respect to the static properties o f  two bows, one with Lo = 0 and the other  with L0 = 

.143, he states: 'The greatest difference between these two types o f  bows is due to dynamical 

conditions' .  However, it is seen from Table 4.1 that the values of  q, r / and  v nearly do not  change. 

From our calculations it follows that  the behaviour of  the dynamic force E and of  the recoil 

TABLE 4.1. 

Influence of grip length 2Lo. 

L o 0 .0714 .143 .214 

q .415 .411 .407 .403 
n .88 .88 .89 .90 
v 2.18 2.18 2.16 2.16 

force P, are almost the same for the two types. Hence also with respect to these dynamic prop- 

erties no clear differences appear in our theory.  

In Table 4.2 the influence o f  the brace height is shown. In [1 ], page 21, Hickman makes the 

following statement based on experiments:  'The arrow velocity increases with increase in bracing 

height up to a certain point,  after which it slowly decreases with addit ional increases in bracing 

height. The bracing height for maximum arrow velocity depends principally on the length of  

the bow' .  This does not  agree with the results of  our theory.  From Table 4.2 we see that there 

is always a small decrease of  the arrow velocity when the brace height is increased. This is due 

to both  static ( q )  and dynamic (~7) effects. 

To investigate the influence o f  the length 2L of  the bow we considered five different lengths. 

From Table 4.3 we find that  there is almost no perceptible change in the efficiency r / o f  the 

bow, hence v shows the same tendency as q. 

TABLE 4.2. 

Influence of brace height IOHI. 

IOHI .0714 .107 .143 .179 .214 .250 

q .444 .438 .430 .420 .407 .392 
n .91 .91 .90 .89 .89 .88 
v 2.29 2.28 2.25 2.21 2.16 2.12 
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TABLE 4.3. 

Influence of  length 2L. 

L 1.143 1.214 1 . 2 8 6  1 . 3 5 7  1.429 

q .393 .400 .407 .413 .417 
n .88 .88 .89 .89 .89 
v 2.12 2.15 2.16 2.18 2.21 

Now we consider the influence of the distribution of the bending stiffness IV and the mass V 

along the bow. We take 

L - s  13n 
IVn(S)=l '47 \ L - L o /  ' L0 < s  < L ,  (4.9) 

and 

[ - s ~n 
Vn(S) = l.75 t-ff---~oo) , Lo < s < L,  (4.10) 

where n = 1, 2, 3, 4 and/31 = 0,132 = ½,/33 = 1,/34 = 2. A value of/3 n chosen in (4.10) needs not 

to be the same as the one chosen in (4.9). In order to avoid numerical difficulties we take again 

/ s ~n 
IVn(S)= 10 --4 if 1.47 ~ )  < 10 -4 . (4.11) 

The results of  changing W and V separately are given in Table 4.4. We conclude that if the mass 

distribution V is taken to be linear (V3), the constant bending stiffness distribution ( W1 ) is the 

best, due to both static ( q )  and dynamic ( r / )  effects. If the bending stiffness IV is linear (IVa) 

then the mass distribution V4, which has light tips, is undoubtedly the best. We refer to Figure 

4.4 for its DFD curve. 

TAB LE 4.4. 

Influence of  bending stiffness W and of mass V. 

W(s) W 1 W 2 W 3 W 3 

V(s) V 3 VI V2 V3 V 4 

q .417 .414 .407 .407 .407 .407 .407 
.93 .91 .89 .74 .81 .89 .97 

v 2.25 2.21 2.16 1.98 2.08 2.16 2.28 

TABLE 4.5. 

Influence of  bending stiffness W and of  mass V. 

W,V W I ,V I W 2,V 2 W3,V~ 

q 4.17 .414 .407 
n .87 .86 .89 
v 2.16 2.15 2.16 
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In Table 4.5 W and V are changed simultaneously. The results in this table show that the 

quantities q, r /and ~ of the bow nearly depend only on the ratio of the two functions IV and I1. 
However, as can be seen from Figure 4.4, the DFD curve of the bow with Wa and V3 is far 
more smooth than those of the other two bows. It shows that although the efficiency of a bow 
with uniform distributions of bending stiffness and mass is acceptable, it will shoot almost 
surely unpleasant. 

We now consider the influence of the shape of the bow in unbraced situation. This shape is 
determined by the function Oo(s ). We choose 

0o, l ( s )=0 ,  0 < s < L  o, 0 o , l ( s ) = - . 1 2  , L o _<s _<L, (4 .12)  

0o,z(S )=  0, 0 < s  < L  o, 0o,z(s ) = - . 5 ( s - L o ) ,  L o_<s <_L, (4.13) 

0o,3(s ) = 0 ,  O < s < L  o, 0o,a(S ) = . 1 2 - ( s - L o )  , L o < s < L .  (4.14) 

The three forms are drawn in Figure 4.5. The H bow in unbraced situation is straight, hence it is 
part of  the y-axis, 0 o = 0. The unbraced situations (4.12), (4.13) and (4.14) are called to pos- 
sess recurve as we mentioned before. We have to choose a moderate recurve in order to agree 

0 

Figure 4.4. 
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Figure 4.5. Three types of recurve 0O, l(S), 00,2(s ) and 0o,3(s ). 
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with the assumption that  the string has contact  with the bow only at the tips o f  the bow. It is 

seen from Table 4.6 that the efficiency of  the recurved bows is slightly smaller than the effi- 

ciency o f  the H bow (00  = 0). In the case of  0o, a however, there is a more important  favour- 

able influence of  the recurve on the static quality coefficient q. This agrees with the experience 

of  Hickman [1], pages 22, 24 and 50. In [6] a bow with even a coefficient q equal to .833 is de- 

scribed. However, for this bow the string lies partly along the bow during some time interval. In 

a following paper we hope to be able to describe the dynamic performance of  such a bow. 

TABLE 4.6. 

Influence of shape of  unbraced bow. 

0 o 0 o ~- 0 0o, ~ 00 ,  2 0o,3  

q .407 .424 .457 .487 
n .89 .83 .81 .83 
v 2.16 2.14 2.19 2.29 

We stress that for a bow with a shape given by  00, 3 the recoil force P at the bow hand is pos- 

itive at all t imes in between loosing the arrow and its leaving the string (Figure 4.6). This is in 

contradict ion to all other bows mentioned so far. 
Next the influence of  the mass of  the arrow is considered. In Table 4.7 the consequences of  

changing m a are collected. Now also the product  of  q and r / i s  given, being a measure of  the 

energy imparted to the arrow. The factor q is .407 in all cases. The first and last given arrow 

masses in Table 4.7 are of  little practical importance,  however, they show what happens in the 

case of  a light or heavy arrow. When the mass of  the arrow is somewhat smaller than the small- 

est mass mentioned in this table the force exerted on the arrow by the string becomes zero be- 

fore the string is stretched and hence our theory may be no longer valid. We remark that the de- 

E,P' 

2 

0 

Figure 4.6. 

1 
) b  

Dynamic force E (b)  and recoil force P (b )  for recurve 00,3" 
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TABLE 4.7. 

Influence of  rnass o farrow 2m a, q = .407. 

m a .0192 .0384 .0769 .1538 .3077 

.48 .69 .89 .98 .98 
q. ~ .20 .28 .36 .40 .40 

v 3.20 2.72 2.16 1.63 1.14 

crease of  the efficiency with the decrease of  the arrow mass, shown in Table 4.7, does not  occur 

in the H model. Table 4.7 shows further that  although the efficiency of  a bow shooting a light 

arrow is bad, the muzzle velocity will be high, a fact already mentioned in many books about 

archery. 

In [ 1 ], page 167, Klopsteg defines the concept of  virtual mass as: 'A  mass which, if  it were 

moving with the speed of  the arrow at the instant the lat ter  leaves the string, would have preci- 

sely the kinetic energy of  the limbs and the string at that  instant ' .  If/('~ denotes the half of  the 

virtual mass then 

. 4 :  ( m  a + / ~ h ) c ~  2 . (4 .15)  

If  we define Kh = K h / m  b, we obtain by using (4.3) 

l - r /  

Klopsteg continues: 'That  the virtual mass is in fact a constant,  has been determined in many 

measurements with a large number of  bows' .  However, if we compute K h using (4.16) for three 

values o f  m a, .0384, .0769, .  1538, we get .017, .010, .003, respectively. So by our theory K h is  

definitely not  independent  of  the mass of  the arrow in the case of  the H bow. 

In Figure 4.7 we depict one SFD curve and a number o f  DFD curves for different values of  

F,E 

I 

0 

Figure 4.7. 

j ma:1538~~ 

t ) b  
1 

SFD curve F ( b ) and DFD curves E ( b ) of H bow, different arrow masses 2ma, Table 4.7. 
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m a .  If  the mass m a becomes larger the DFD curve approaches the SFD curve. With respect to 

the maximum value o f  the recoil force P we note that, i f  m a tends to infinity, we get a quasi- 

static situation and hence also P as a function of  b will follow closely the SFD curve. It appeared 
that the maximum value o f  P increases if  the mass of  the arrow decreases. For  m a = .0192 we 

even get a maximum value of  P equal to about 5 times the weight of  the bow. 

Finally the influence of  concentrated masses m t at each of  the tips o f  a bow is described. 

For  that purpose we give the parameter  m t three different, non-zero values. In Table 4.8 the 

TABLE 4.8. 

I n f l u e n c e  o f  c o n c e n t r a t e d  t ip masses m t, q = .407.  

m t 0 .0769 .1538 .2307 

n .89 .87 .84 .82 
v 2.16 2.15 2.11 2.08 

value o f  q is .407 in all cases. From this table it follows that the efficiency decreases slightly if  

the mass m t at the tips increases. In Figure 4.8 the DFD curves are drawn. It is seen that the 

force E on the arrow possesses a jump at the time t = 0. This jump becomes larger when m t in- 

creases. Most o f  the energy used to accelerate at early instants the concentrated masses at the tips 

is transferred later on to the arrow. This follows from the fact that the forces on the arrow grow 

with increasing values of  m t in the region where the string becomes more stretched. 

In [ 1 ], page 47, Hickman describes an experiment made to find the effect of  the mass at the 

bow tips. We quote: 'Measurements of  velocities for different weight arrows showed that a load 

of  400 grain (.02592 kg) added to the arrow weight, reduced the velocity by about 42 feet per 

second or 25 percent. In contrast to this, the same load added to the tips only reduced the velo- 
1 

city even for a light arrow, by about 1~ feet per second or approximately  one percent ' .  From 

Table 4.7, third and fourth column, it follows that if we increase the half arrow mass m a by 

.0769, the velocity decreases by 24.8 percent.  From Table 4.8, first and second column, it fol- 

lows that if we add a mass m t = .0769 to each of  the tips the velocity decreases only by .7 per- 

E 

1 

0 
Figure 4.8. 
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DFD curves for Hbow with masses m t at the tips, Table 4.8. 
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cent. Although we do not  know what type of  bow Hickman used for his experiment,  his findings 

agree qualitatively with these results. 

A P P E N D I X  

On the behaviour o f  the normal force Ta t  t = 0 

In this appendix we discuss the behaviour o f  the normal or longitudinal force T in  the bow at 

the time the arrow is released, t = 0. In an early a t tempt  we took for the first time step, from 

t = 0 to t = A t in the finite-difference scheme (Section 3)/a = ~. For  the initial values of  the un- 

known x , y , M a n d  Twe took  their values in the static fully drawn position. When masses m t :/: 0 

were present at the tips we found that  the resulting solution has a non-physical oscillatory char- 

acter, indicating that  the initial values for the unknowns were not  sufficiently accurate. To im- 

prove the procedure,  a fully implicit  backward-time difference scheme ( #  = 1) for the first step 

( k  = 0) is chosen (Section 3, (ii)). In this way the initial values of  the normal force T are not 

used. We will now show that the static values of  T cannot be used with respect to our method 

as initial values, when concentrated masses at the tips are present. 

In Figure A.1 the normal force T ( L ,  t )  at the tip is drawn as a function of  time, for a very 

small time interval after the release of  the arrow. This normal force is calculated by the method 

described in Section 3, for the bow 

B(91.49,  10.16, W(s), V(s),  0 o = 0 ,  .0125, .0125, IOH1=15 .29 ;  

71.12, 15.53, .1625), (A.1) 

T(L, t ) '  
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Figure A. 1. 

- s t a t i c  c a s e  

Normal force T( L, t ) at tip, both static and dynamic, for different values of n s. 
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where W and V are defined by (3.25), (3.26) and (3.27). From (A.1) it is seen that m t = m a = 

.0125. If  we extrapolate  the dynamic normal force T ( L ,  t )  with t > 0 to time zero, we find a 

value unequal to the static normal force T1 ( L )  at the tip. This static force is indicated at the 

vertical axis of  Figure A.1. The magnitude o f  the jump appeared to be dependent  on the mass 

m t at the tip. It is zero for m t = 0. For  increasing values o f m  t it first increases but  then decreas- 

es, such that  for m t ~ ~ the jump tends to zero again. 

This jump phenomenon seems to be related to the inextensibil i ty o f  the bow by which possi- 

bly longitudional disturbances can be transferred instantaneously. In order to investigate this we 

replaced the constraint (2.31), expressing the inextensibil i ty of  the bow by the relation 

T(s, t) = { ~" U(s) "{x '2 + y,Z _ 1 }', (A.2) 

where U(s  ) is the distribution function of  the strain stiffness (cross-sectional area times Young's 

modulus) o f  the bow and 7 is a parameter.  

Increasing values of  7 correspond to less extensibil i ty of  the bow. In Figure A.2 the normal 

force is shown as a function o f  time, again immediately after the release of  the arrow. The stiff- 

ness parameter  7 ranges through the values 1, 10, 100, 10000. Also the curve for an inextensible 

bow (3, -* ~ )  is drawn. It can be seen that, if  the bow is definitely extensible, 7 = 1, 10 or 100, 

the normal force at the t ip is continuous with respect to time at t = 0. If  the strain stiffness is 

increased the obtained curve 'converges' to the curve in the inextensible case and a jump appears. 

For values o f  s, Lo __< s < L, we observed the same behaviour of  the normal force. 

We mention that  for a consistent t reatment  of  an extensible bow the Euler-Bernoulli equa- 

t ion (2.32) has to be changed also, because then the parameter  s is no longer the length para- 

meter. However, by the foregoing results it is at least reasonable that the inextensibili ty of  the 

bow has a strong influence on the behaviour of  T after the release of  the arrow. 

T(L,t) '  
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Figure A.2. Normal force T(L, t ) at tip for different values of % 
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